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Abstract---Geurst's equations are used to predict the speed of disturbance wave propagation in a mixture 
containing a compressible dispersed phase. Results are obtained for the case when there is no relative 
velocity ahead of the disturbance and are compared with Karplus' data for air-water mixtures. The 
changes in density, void fraction and the velocities of each phase across the wave are predicted. 
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S H O C K  C O N D I T I O N S  

We start with the macroscopic equations of motion for the potential flow of a two-phase dispersion 
derived by Wallis (1989a-c) by the method of progressive examples, which is actually a version of 
the space-averaging procedure, and by Geurst (1985a,b, 1986) by the variational method. 

The continuity equations for the continuous and dispersed phase, respectively, are as follows: 

a 
a t  (p iE, )  + V" (p, e, Vl) = 0 [1] 

and 

a 
at (p2E2) + v .  (p2E~v:) = 0; [2] 

(el + E2 = 1). 

We consider the momentum conservation equations for the combined phases, using the 
momentum density and combined momentum flux and stress tensor, and for the fluid alone. The 
most suitable form of these equations (Wallis 1989a,b) for the purpose of the present work is as 
follows (there is no requirement that the dispersed phase be incompressible): 

a 
05 (Pl £1¥1 "~ p2EE¥2) -~ V" (PlElVlVl "[- p2£2V2V2 "[- p l e I E w w )  + V(EIpz + E2P2) = 0 [3] 

and 

__a (V I "~ Ew)-~- V ( v  I • (v I -~- Ew)122Vl _ ½ Ew2x _ vl x V x (vl + E w ) +  --VP~ = 0. [4] 
at  \ /I Pl 

Here E(E2) is the exertia defined by Wallis (1989c); terms including E are responsible for the 
interphase interaction due to inertial effects associated with the relative motion of the continuous 
and dispersed phases; w is the relative velocity, vj - v 2. The closure of the system [1]-[4] is given 
by the equation of state of the dispersed phase (which we specify below) and the pressure difference 
bet~veen the phases (Wallis 1989c; 1991, this issue, pp. 683-695): 

dE 
Pl -P2  = ½P, El W 2 - - .  [5] 

dE 2 

i'On leave from the Institute for Problems in Mechanics, Moscow, U.S.S.R. 
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External forces per unit volume of a certain phase are henceforth omitted; such forces do not 
influence the considered propagation of concentration waves in a two-phase medium (a special case 
of so-called "surface external forces" is withdrawn from consideration). We note that the 
traditionally used fluid-particle viscous-drag force is not included in the present model derived for 
the suspension of particles in an ideal fluid. The common phenomenological approach based on 
the combination of viscous and inertial effects in interphase interaction can, in principle, be used 
for further development of the model under consideration. 

Now we consider a surface of discontinuity in fluid properties. Of course, all hydrodynamic 
parameters (the phase concentration, the density of the dispersed phase, velocities and pressures 
of the continuous and dispersed phases) have jumps across the considered surface. 

Although we shall consider one-dimensional waves in this work, it is useful to derive a general 
form of small shock conditions in the three-dimensional case. We assume that the flow of the 
continuous phase is irrotational. Taking into account that (Wallis 1991) 

V x v, = - V  x (Ew). [6] 

we obtain [1]-[4] in the gradient form, which immediately leads to the jump conditions: 

[E,v,.] = 0. [p2qvM = 0. [7] 

[ptqv~. + pzrzv2. + p,EiEw2n -b E,p, + £2P2] = 0 [8] 

and 

[½v~ + Ev,  . w - ½Ew 2 + P ' / =  0, [9] 
q 

P,_I 

where [A] denotes the jump of a value A across the small shock. The subscript n denotes the velocity 
component normal to the discontinuity surface. We note that the shock conditions at V x v, ~ 0 
are important only in the case of contact discontinuities. 

Now we consider only one-dimensional flow when the condition V × Vl = 0 is satisfied automati- 
cally. We assume that the dispersed phase is barotropic, such that 

P2 = P2(Pz). [113] 

We note that if [10] is not valid, it is necessary to take into detailed consideration heat- and 
mass-transfer processes between the dispersed and continuous phase (Nigmatulin 1978). In this 
work we intend to consider only purely mechanical phenomena focusing on the effects of inertial 
coupling of the phases. 

We denote the (macroscopic) hydrodynamic parameters in front of the discontinuity by the 
superscript "0". An absence of the superscript indicates hydrodynamic values behind the shock. 
Using [5] we get the one-dimensional shock conditions: 

0 0 [11] ElY 1 ~ E I / ) I ,  

P2E2v2 = P°E°v°, [121 

p,E, v f + p 2 c 2 v ~ + p , H ( E 2 ) w = + p 2 ( p 2 ) = p ,  EO(vo)2+ o o 02 o oz o p=¢2(V=) + p tH(Ez) (w ) + P=(P2), [13] 

and 

pl(~Vll 2 + E(E2)V,W + ½F(¢2)w2)+ p2(p2)= pt(i(v,)' o 2 + E(Ez)v, o o + ½F(EO)(wO)2)+ p2(po); 

(q + E= = 1). 

Here we introduced the functions 

and 

, 2dE 

[14] 

[15a] 

dE 
F(Ez) = q -T-  E. [15bl 

Gq 
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In the case of a barotropic dispersed phase (e.g. gas bubbles at isothermal conditions) the system 
[11]--{14] is sufficient to find all hydrodynamic parameters behind the shock from the given 
parameters in front of it. 

A W E A K  S H O C K  PROPAGATING IN A MOTIONLESS TWO-PHASE MEDIUM 

We start with the case when there is no relative motion in the two-phase medium in front of 
the shock, so that w°= 0. Choosing the appropriate coordinate system we assume that this 
two-phase medium is motionless in front of the shock. The considered situation seems to be the 
simplest one; nevertheless, it is shown below that the wave velocity is high enough (of the order 
of several tens of m/s) that the present consideration covers situations when the relative velocity 
is reasonably high (of the order of several m/s) in front of the shock. 

In the coordinate system connected with the shock 

v °=  v °=  - D ,  [16] 

where D is the velocity of shock propagation. 
Now we consider the propagation of a weak shock. Assuming small deviations of the 

hydrodynamic values behind the shock from the parameters in front of it: 

E l = COl - -  E | ,  22 = E0 "31- E | ,  p 2 = p O + p ~ ,  

v, = -D + v i ,  v := - O  +v~, (w =v ' , -v~ ) ,  

o {dp2"~ 
P: =P2 + I--- p~, [17] 

\dPJ,2=p~ 

where A i ~ A 0 (A is any of the hydrodynamic parameters) and neglecting terms of order higher 
than the first in E ', p~, v l and v~ in [l l]-[14], we obtain the lineadzed shock conditions as follows: 

DE' +E°v] = 0, [18] 

o I _ : . o ,  I = 0 ,  [191 p°DEl + E2Dp2 /~2~2~2 

(pt_pO)D2Ei _ (c2+EOD2)p~+EptEODvl+ 2p2E2DvzO 0 ' = 0 [20] 

and 

2 i 1)DvI p,E°Dv~=O, COp2 -- Pl (E(EO) "4- + 

where Co is the sound speed in the pure phase "2" in front of the shock, so that 

[dp2"~ . 

The condition of solvability of the linear system [18]-I21] is 

D 0 E ° 

pOD E~D 0 

(p, -- p°)D2 - (c~  + E° D 2) 2p, E° D 

0 Co 2 -P l  ( E° + 1)D 

0 
_ p O :  

2p2EOD = O. 

Pl E °D 

[21] 

[22] 

[23] 

Apart from the trivial double solution, Dz=  0, corresponding to convection of concentration 
disturbances by the dispersed phase, we immediately obtain the speed of the weak shock ("speed 
of sound" in the considered two-phase media) in the form 

E ) + p2EIE2 [24] D ~ = c 0  ~ pO p , ( (Eoy+ 0 0 o 0 

PIE ° P,:E ° + P ~ : ( E  ° + I)" 

Obviously [24] gives the velocities for two waves propagating to the "left" and to the "right" in 
the chosen coordinate system. It is identical with the wave speed predicted by Geurst (1985a,b) in 
the limit where the relative velocity ahead of the wave is small. 

LIMF 17/6--8 
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It is useful to obtain from [24] the speed of propagation of a small-amplitude wave for some 
important extremes. 

At q--,0(e2~ 1) the second phase occupies the whole space and from [24] we obtain (as should 
be expected) 

9 2 = C0 2 . 

In the case when the density of the dispersed phase is much lower than that of the continuous 
phase (this case corresponds to the most straightforward application of the considered model, i.e. 
to a bubble-liquid mixture), the weak shock propagation speed is as follows: 

D 2 2/9°  (E° )  2-{" E 0  
_0_0~0 [25] ~ - C O p l  ¢ 1 f. 217_ , 

This wave speed is real because E is proportional to the difference between the mean square of 
the fluid velocity and the square of the mean fluid velocity in a coordinate system relative to the 
dispersal phase and must always be positive (Wallis 1989b); put another way, the kinetic energy 
due to relative motion must be positive. 

When Maxwell's approximate expression for the exertia (Maxwell 1881; Wallis 1989c, 1991) is 
used, 

E =-E2 [26] 
2 '  

the expression for D reduces in the general case to 

D2=c~ pO pt(2EO+l)+2pOEO 
/9, co plcO + pO(,O + 2) [27] 

and in the case of bubble-liquid flow to 

D :  = Co #0 2,0 + 1 [28] 
0 0 

Pl EIE2 

We note that in the last case, the dependence of the wave speed on the concentration has a minimum 
at 

2 ~ 0.37. [29] 

The corresponding minimum value of the wave speed is 
2 D min p0  

c2 "-- 7.46--.p1 [301 

These results show a considerable reduction in the speed of the weak shock (or the "speed of 
sound") in the two-phase mixture due to inertial coupling of the phases. An estimation of the 
influence of the inertial interphase interaction on the wave speed can be made with help of the next 
simple example. We consider the system of air bubbles in water at standard conditions, so that 
/92 '~ Pl. Assuming that e ° = e ° = 0.5, for the Maxwell exertia, we immediately find from [28] that 
D ~ 29.5 m/s. Without an interphase interaction E = 0 [i.e. in the case of a stratified compressibility 
wave in accordance with Wallis (1969)], we find from [24] 

D2 = c~P 'E°+P%° [311 
p~E ° 

When P2"~Pl this gives D2= c20, indicating that inertial interphase interaction leads to a 
considerable decrease in the wave speed. 

An opposite extreme is the "homogeneous" wave speed, i.e. the velocity of wave propagation 
in the suspension with extremely strong interphase interaction when there is no relative motion of 
the phases. To obtain the wave speed in such a case we assume E ~  ~ in [24], so that 

D 2 = c 2 p0 1 [32] 
0 0" ,°olEO+p2,2 
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Figure 1. Wave speed in an air-water mixture vs void fraction at isothermal conditions: p = 1 atm, 

T = 20°C; comparison with Karplus (1958) data. 

To assess the effect of  inertial interphase interaction on wave propagation we compare, at 
p°2 ,~ pl, the result [28] both with the wave speed for a homogeneous suspension and the 
experimental data by Karplus (1958). The result of  such a comparison is represented in figure 1 
for an air-water mixture at normal conditions in the case of an isothermal compression of  the 
bubbles. 

It is clearly seen from the curves that an interphase interaction limited to inertial coupling leads 
to an increase in the wave speed compared with the case of  the "extremely strong" interphase 
interaction corresponding to an absence of  relative motion of  the phases (i.e. E - - , ~  in the model 
under consideration). While the lower curve representing the wave speed in a homogeneous 
suspension is symmetrical with the minimum at E ° = E ° = 0.5, the curve for the wave speed in an 
inertially coupled mixture is clearly shifted to the left with the minimum at E ° -~ 0.37, as was pointed 
out in [29]. While at a low concentration of  the dispersed phase both wave speeds practically 
coincide up to E ° -~ 0.1, at high concentration the results show a pronounced difference in D for 
both cases; e.g. at E2 ° = 0.8 for a homogeneous suspension we find D = 62.8 m/s, while for inertially 
coupled phases D -~ 163 m/s. Within the range of  "intermediate" concentrations (E ° = 0.25 to 0.6) 
the relative difference of  the wave speeds for both cases is from 20 to 50%. 

As may be seen in figure 1, the experimental data by Karplus (1958) actually lie between the two 
curves. While the experimental data obtained for low frequencies of  the included disturbances are 
somewhat closer to the lower curve corresponding to the homogeneous mixture (especially in the 
range of  low concentrations of  the dispersed phase), experimental data for higher frequencies are 
clearly shifted to the direction of  the curve obtained for inertially coupled phases. This is to be 
expected because inertia effects become dominant at high frequencies, while drag forces ensure 
homogeneous motion at low frequencies. I f  drag forces are added to [3] and [4], the propagation 
of  disturbances becomes dispersive with the wave speed at low frequency, given by [32], and at high 
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frequency, given by [27]. There is evidence for this trend in figure 1. For a more complete 
description, thermal relaxation would also have to be considered. 

We emphasize that the shock waves considered above are actually due to the combination of 
two phenomena, i.e. the jump of the concentration of the dispersed phase across the shock and 
the jump of the density of the dispersed compressible phase across the shock. The relationship 
between the jumps of gas density and dispersed phase concentration across the weak shock can 
be obtained from [23] as follows: 

po(¢o + co) p, ((¢o)2 + go) + ~,2~ l ~ - °  .o .o 
¢1 [33] P ~ =  o o  o o o  o E,E2 (Pl + P2)¢,¢2F~ + (p, + P°)(¢°)2E° + P,(E°) 2 + po(¢o)2 • 

In the case of bubble-liquid flow [33] reduces to 

( d )  2 + E ° p~ = _p0 El. [34] 
E0 ~OrO 

I e 2 F - ,  

As can be seen from [33] and [34], at least for the small-amplitude shock, the compression jump 
of the mass density of the dispersed phase is necessarily associated with the "rarefaction" jump 
of the concentration E2 of the dispersed phase (i.e. with the voidage jump corresponding to the 
decrease of cz across the shock), and vice versa--the rarefaction jump of the density Pz is associated 
with the "compression" jump of the concentration E2. 

For a gas-liquid mixture the relationship [34] between the small-amplitude jumps of the density 
and the concentration of the dispersed phase, with the help of [251, can now be rewritten in the 
simple form 

D 2 
p ~ - - -  - -  p l  - ~ ' -  E I. [35] 

~'0 

In the general case the relationship is as follows: 

p~ = p, pO(¢O+ tro)D~ l 
0 0 0 2 ¢1E2(p2co + p ~ 2 )  ¢ " [36] 

Equations [35] and [36] give the relationships between the small-amplitude jumps of the voidage, 
density and the propagation speed of the wave. 

Now we analyze the velocities of the fluid and the dispersed phase behind the small-amplitude 
shock. From [17] and [18], for the fluid velocity it immediately follows that 

vl = - D  1 + . [371 

To analyze the jump of the velocity of the dispersed phase we start from the case of bubble-liquid 
flow. From [17], [19] and the relationship between the jumps of the gas density and the voidage, 
[34], we obtain 

v 2 = - D  1 + ( 1 \  1 [381 

It can easily be shown that for any positive E ° 

(E°) 2 + E ° 
d ¢ o z 0  1 > 0. [39] 

behind the front of the wave, so that both the velocity of the fluid and the velocity of the dispersed 
phase exceed the "sound" speed of the two-phase dispersion D in the case of the "compression" 
shock of the concentration associated with the rarefaction shock of the gas density. Naturally, the 

The results in [37]-[39] imply that 

IVll>D, Iv%l>D at E l>0(p~<0)  [40a] 

and 

Ivtl<D, Iv21<D at e t<0(p~t>0)  [40b] 
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flow of both phases is "subsonic" (relative to D) behind the shock in the case of the "rarefaction" 
shock of the concentration associated with the compression shock of the gas density. 

In a pure gas the flow approaching a compression shock is supersonic, but this result cannot 
be derived from [33]-[36] and [38] because these relationships fail at E ° = 0 (E ° = 1) due to the neglect 
of P2 compared with p~ in using [25] instead of [24]. 

The result [40a, b] is still valid in the general case when P2 is not necessarily negligible compared 
to Pl. In the general case, the formula [37] for the fluid velocity behind the shock is valid as well. 
The jump of the velocity of the dispersed phase v2 ~ can be obtained from [19] as 

D 0 t v~ = ~ ( p 2  E + E°p~). [41] 

Substituting the relationship [33] between the jumps of the density p~ and the voidage E l into [41], 
after rather lengthy but straightforward algebra it can be proved that v~ =--C(E°)E ~, where 
C(E °) > 0 within the interval 0 ~< E ° ~< l, so that the result [40a, b] on the character of the velocity 
of the dispersed phase obtained for the bubble-liquid dispersion is valid in the general case. 

If the compressibility of at least one of the phases is not taken into account, the governing 
equations [1]-[5] do not allow a sdution in the form of the concentration shock propagating 
relatively to the dispersed phase (the details of the corresponding derivation are omitted here). The 
last circumstance is connected with the neglect of interparticle interaction. An analysis of this 
situation for gas-solid mixtures has been given by Sergeev (1988/89). 

The results obtained show that for physically realistic situations the relative velocity between the 
phases ahead of the wave can usually be neglected. Indeed, the wave velocity at usual conditions 
is of the order of tens of m/s. Bubble-liquid flows with relative velocities of the phases with this 
order of magnitude can hardly be imagined. 
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